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Part 1

Analysis of New York Hurricane Sandy 
data
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Raw Data

• Count: 10.5K
• Location information: Geo-tagged tweets from 

Manhattan
• Date range: 10/26 13:59:06...11/3 23:56:23

– 10/26: “Sandy strengthens as it moves from Jamaica to 
Cuba …only 1 mph below the status of a major Category 
3 hurricane.”

– 11/3: “NBC News reports that the death toll in the U.S. 
is now 109, including at least 40 in New York City.”
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Data in ORA

• We have 1 MetaNetwork/tweet
– Agents: The person tweeting and the people she 

mentions
– Knowledge: The hashtags used in the tweet
– Location: The location of the tweet

• First, we will aggregate the data by 1 day and 
look at:
– Basic statistics and network visualization over time
– Where the tweets came from over time
– Where #s moved over time
– Where agents tweeted from over time
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Aggregating the data

• Things to think about: Why? What do we lose?
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Basic Statistics: Node count over 
time

• What do you expect?

On the 29th, people focused on more specific 
topics/hashtags, even though more people were 
tweeting
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Basic Statistics: Density over time

• What do you expect?
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What did the network look like 
over time?

• What do you expect?
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Observations

• Within the LCC, a few #s dominated - #sandy, #NYC, 
#HurricaneSandy
– When we remove these, we lose a lot of the structure in the 

network
• Oftentimes, the things outside the LCC were thus unrelated

– But not always – e.g. 11/1: “#gerritsonbeack in bkln not in 
zone a on #cbs they say no food no water need help”

• There was a higher density in the LCC as time progressed
• Within the LCC of the AA network, nearly all of the nodes 

were public accounts
• Bottom line: 

– The “geo-tagged Twitter network” in Manhattan organized around 
information hubs (public accounts) who were concerned with the 
earthquake

– But where were they?
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Tracking Tweet volume in Space 
over time

• We know all of the Tweets we have came from 
around Manhattan
– Can we use them to see which areas were most 

affected?
– How does this change over time?

• Overview: using a Zillow shapefile, visualize 
where tweets were coming from over time in the 
Geospatial visualizer
– http://www.zillow.com/howto/api/neighborhood-

boundaries.htm
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Tracking Tweet volume in Space 
over time

10/28 10/29

11/1 11/3

http://www.bbc.co.uk/news/world-us-
canada-20151303
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Observations

• Many of the tweets came from Midtown, the 
business hub of the city
– This isn’t that surprising, given it has a high density

• But we can see that the areas that had relative 
increases in tweets appear to be places where 
disaster struck worse

• Was it because people were moving there or 
because more people from there were tweeting?
– Let’s use Loom to take a look at movements
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Observations

• The most important agents (i.e. those that 
tweeted the most) tended to stay in the same 
place when they were tweeting
– We could compare this to a model of how agents 

typically move to see if this happened because of the 
disaster

• However, this suggests that, indeed, 
proportionally more “residents” may have been 
tweeting from the more affected areas during the 
disaster
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Analysis of Hashtags 
“HurricaneSandy” Overtime

Degree Betweenness

EigenvectorCloseness
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Top Hashtags

10/26 10/27 10/28 10/29 10/30 10/31 11/1 11/2 11/3

#Sandy #hurricanesand
y

#hurricanesand
y #Sandy #Sandy #nyc #NYC #Manhattan #Manhattan

#NOAA #Miami #nyc #NYC #NY #sandy #SandyNYC #Sandy #traffic

#NPP #Florida #Sandy #HurricaneSan
dy #Newyork #Miami #HurricaneSan

dy #Miami #Miami

#VIIRS #nyc #Frankenstorm #NewYork #hurricanesand
y #Florida #NYRNY #Florida #Florida

#NASA #water #Hurricane #traffic #hashNewyork #hurricanesand
y #sandy #ConEdison #NYC

#Miami #Sandy #newyork #Miami #NYC #Manhattan #NY #nyc #Stuytown

#Florida #storm #fb #Florida #Miami #traffic #Miami #hurricanesand
y #pcvst

#Newyork #readiness #Evacuation #tcot #Florida #NY #Florida #traffic #1

#NY #flashlights #MTA #NY #astoria #ConEdison #Manhattan #Newyork #Sandy

#hashNewyork #batteries #brooklyn #HellsKitchen #manhattan #NJ #recovery #NY #WestVillage
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Conclusion

• We began by noting that
– Hashtag count actually decreased during the Hurricane 

even though number of agents increased, suggesting 
that information became much more centered around 
the hurricane

– The “geo-tagged Twitter network” in Manhattan 
organized around information hubs (public accounts) 
who were concerned with the earthquake

• Twitter may not have been the best source of 
information during the hurricane, but there is 
evidence that
– People tweeted proportionately more from 

affected areas
– Hashtags became more localized
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Part 2

Sentiment Analysis
(Opinion Mining)
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Why Sentiment Analysis?
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Why Sentiment Analysis?
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What is Sentiment Analysis?

Goals:
• Elicit emotional responses in internet exchange
• Identify subjective information in text
• Often outputs polarity (-ve, +ve, neutral) or scale 

(1,..., 5)
• Attitude of the writer towards a topic
• Find source, target and complex emotions

Use Cases:
• Business looking to market their products
• Understanding voters
• Build Networks??
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Linking Text Sentiment to Stock 
Market

Source: http://socialmediaimpact.com/5-reasons-twitter-becoming-essential-stock-market/
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Common Approaches

• Lexicon Based
– Count based Techniques
– Rule based Techniques

• Machine Learning/ Statistics Based
– Naïve Bayes
– Latent Semantic Analysis
– Neural Networks (Deep Learning)
– And More
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Sentiment Analysis – Lexicon Based

23Source: Journal of Intelligent & Fuzzy Systems, vol. 29, no. 1, pp. 107-117, 2015

Many open source Lexicons are 
available

e.g. SentiStrength
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Sentiment Analysis –Naïve Bayes

Assuming POS Tags and n-grams are conditional independence
M = Twitter message, S = sentiment, G = n-grams, T = POS tags
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Sentiment Analysis –Naïve Bayes

Let’s find the sentiment in text ”SI is good” using Naïve Bayes.
Assume: + implies Positive sentiment and - implies Negative 

sentiment, and P(-) = P (+) = 0.5

P(+|”SI is good”) = P(+)* P(”SI is good” | +) / P(”SI is good”)

P(-|”SI is good”) = P(-)* P(”SI is good” | -) / P(”SI is good”)

Divide the last two equation to find the ratio of sentiment:
P(+|”SI is good”) / P(-|”SI is good”) = P(”SI is good” | +) / P(”SI is good” | -) 

Using independence assumption:
= P(“SI”| + ) P(“good”| + )  /   P(“SI”| - ) P(“good”| - )
= P(“good”| + ) / P(“good”| - )  = .01 / 0.00001 = 1000
=> Sentiment is more positive



June 2017 26© 2017 CASOS, Director Kathleen M. Carley

Sentiment Analysis –Neural Network

Source: http://cs224d.stanford.edu/lectures/CS224d-Lecture11.pdf
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Sentiment Analysis – Neural Network

Source: http://cs224d.stanford.edu/lectures/CS224d-Lecture11.pdf
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Movie review examples

• I think the Academy was too chicken to give the Best Picture to 
Brokeback Mountain, and that sucks.

• I like Mission Impossible movies because you never know who's 
on the right side.

• I loved the Da Vinci Code, but now I want something better and 
different

• Then snuck into Brokeback Mountain, which is the most 
depressing movie I have ever seen.

• I think I hate Harry Potter because it outshines much better 
reading material out there and the movies are just plain stupid to 
begin with.

• why may you ask well I love Mission Impossible stories.
• The Da Vinci Code's backtory on various religious historical figures 

and such were interesting at times, but I'm more of scifi girl at 
heart.
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SA using Stanford NN: Input Data

2

3

1
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SA using Stanford NN: Input Data
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SA using Stanford NN: Get Scores

1. Go to website http://jsonpath.com/?        
2. Change formula:  $['trees'][*]['scoreDistr']
3. Copy output
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SA using Stanford NN: Get CSV

1. Got o https://konklone.io/json/
2. Paste output of the last page as input
3. Copy output table
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SA using Stanford NN: Use Excel to 
get the final Sentiment Score

• Use Sentiment Calculator Excel sheet
• Paste the result from the last page
• Sheet uses a formula to calculate the final score

Sno Text -2 -1 0 1 2Score

1
"I think the Academy was too chicken to give the Best 
Picture to Brokeback Mountain , and that sucks .", 0.1809 0.5228 0.1839 0.0698 0.0427 -0.73 

2
"I like Mission Impossible movies because you never know 

who 's on the right side .", 0.23 0.5688 0.1073 0.0569 0.0371 -0.90 

3
"I loved the Da Vinci Code , but now I want something 

better and different", 0.03 0.1008 0.2405 0.5155 0.1132 0.58

4
"Then snuck into Brokeback Mountain , which is the most 

depressing movie I have ever seen .", 0.2149 0.5074 0.2545 0.0128 0.0105 -0.90 

5

"I think I hate Harry Potter because it outshines much 
better reading material out there and the movies are just 
plain stupid to begin with .", 0.7592 0.172 0.0559 0.0022 0.0108 -1.67 

6 "why may you ask well I love Mission Impossible stories .", 0.0339 0.1174 0.1329 0.5841 0.1317 0.66

7

"The Da Vinci Code 's backtory on various religious historical 
figures and such were interesting at times , but I 'm more of 
scifi girl at heart ." 0.1213 0.5455 0.2396 0.0676 0.026 -0.67 
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SA using Stanford NN: Useful Links

• http://nlp.stanford.edu:8080/sentiment/rntnDem
o.html

• http://www.jsoneditoronline.org/
• http://www.convertcsv.com/json-to-csv.htm
• http://sentistrength.wlv.ac.uk/
• http://boston.lti.cs.cmu.edu/classes/95-865-

K/HW/HW3/ (Sentiment datasets)
• http://jsonpath.com/?

– $['trees'][*]['text]
– $['trees'][*]['scoreDistr']

• https://konklone.io/json/
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Evaluation

• How well the result agrees with human judgment?
• Human raters typically agree 79% #
• Recursive Tensor Network in around 85% 
• Vader Sentiment Analysis Performance : 96% (F1)

– May be overfitting

#Ogneva, M. "How Companies Can Use Sentiment Analysis to Improve Their Business". 
Mashable. Retrieved 2012-12-13.
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Anne Hathaway and Warren Buffett have recently 
been linked in the media—though not romantically, 

thank god!!

Source http://www.cnbc.com/id/42305525 
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Thank You

37
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Backups

38
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Can We Build Networks from Text 
Sentiment?
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Movement of Agents over time

• First, we have to transpose the LocationxAgent
network

• Then, lets find the most important agents in the 
AA network (Key Entity Report)

• Now, we can see how they’ve moved
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Part 2

Analysis of Arab Spring data
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Arab Spring

• A revolutionary wave of demonstrations in the 
Arab countries
– Began on 18 December 2010
– Rulers had been forced from power in Tunisia, Egypt 

(twice), Libya and Yemen
– Civil uprisings erupted in various countries.

• Social networks play key roles in the evolutions
– Twitter/facebook are used to organize 

demonstrations/protects.
– “digital democracy” brought by social media. 
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Revolution Demonstration from 
Wikipedia 
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Data Collection

• A huge amount of twitter data has been collected
– A collector is running continuously to collect data from 

Apr,2009 to Nov,2013 using a geo location bounding 
box in the Arab Spring region.

– Data are collected through public API of twitter.
– Up to 10% of all the twitter in the geo bounding box is 

collected. 

• Texts are processed using two different ways:
– Only Arabic texts
– Only English texts
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Num. tweet Statistics by Country
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Percentage of Geotagged Tweets 
by Country
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Identifying Topic Groups

• Latent Dirichlet Allocation(LDA) is used to identify 
topic groups based on texts of the twitter 
message
– The tweets of all users are aggregated to form a single 

“document”.
– “topics” are identifies 
by looking at following
a probabilistic graphical
model.
– Each “topic” is represented
by a group of terms.
– Each “document” is scored 
over different topics.
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Locality of Topic Groups.
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Change of Topics Overtime
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Persistent Topics Overtime
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Generating Networks

• An agent X agent network is generated
– Each agent has a topic score vector generated by the 

LDA algorithm.
– Agent to agent relations are generated by calculating a 

similarity score between the topic score vectors.
– For scalibility issues, we choose a score that is eficient to 

calculate:
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Network Metrics—Original Data 
Set
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Network Metrics—English Only 
Data Set
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Component Groups in Twitter 
Reply Network

Num. Nodes Num. Edges Size LSCC

Size LWCC Num. Weak Components Percent of Nodes in LWCC
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Metrics for Network Grouping

Modularity Number of Groups Mean Group Size Percent in Largest Group
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Conclusions

• Geo/temporal locality of topic groups
– Different geo locations have different focuses of topic 

groups.
– The overall most popular topic groups change over time.

• Relations in the co-topic network is an good 
measure of activities in a country.
– Countries have more relations are more likely to have 

revolutions.


